Photoluminescent diagnostics of chickpeas
https://doi.org/10.31367/2079-8725-2025-101-6-5-10
Abstract
High-quality seed material is a critical factor in the efficient production of grain and its products. Producing high-quality products requires more plant protein, a source of which is chickpeas. Quality control, which can be accomplished using optical methods, is of great importance when storing grain and seeds. The purpose of the current study was to validate the selection of informative spectral parameters to develop a photoluminescence diagnostic method for chickpeas. There were studied the optical spectral luminescence properties of middle-maturing chickpeas ‘Pamyat’ harvested in 2024, 2019, and 2017. Optical measurements were performed using a diffraction spectrum fluorimeter ‘CM2203’. There have been obtained excitation (absorption) and luminescence spectra. Chickpea excitation was in the range of 250–550 nm, with maxima at 362 and 424 nm for all samples studied. The greatest difference in the integral absorption parameter was in the excitation range of 370–500 nm. There were obtained integral parameters of the luminescence spectra at excitation wavelengths of 362 and 424 nm. Integral photoluminescence fluxes depended on storage time and percentage of protein and oil in seed. The error in determining the fluxes did not exceed 4.5 %. The most informative excitation wavelength was selected based on the condition of the maximum photo signal level, minimum error in determining the flux, and the greatest flux increase for different values of protein and oil percentage. The optimal excitation wavelength was 424 nm. The photoluminescence emission detection range for this excitation wavelength was 480–650 nm. The results obtained could form the basis to develop a photoluminescence method for monitoring chickpea parameters during long-term storage.
About the Authors
M. N. MoskovskyRussian Federation
M.N. Moskovsky, Doctor of Technical Sciences, professor of RAS, main researcher, laboratory of technologies and machines for post-harvest processing of grain and seeds
109428, Moscow, 1-st Institutsky Pr., 5
M. V. Belyakov
Russian Federation
M.V. Belyakov, Doctor of Technical Sciences, associate professor, main researcher, laboratory of innovative technologies and technical means of feeding in animal husbandry
109428, Moscow, 1-st Institutsky Pr., 5
I. Yu. Efrremenkov
Russian Federation
I.Yu. Efrremenkov, junior researcher, laboratory of innovative technologies and technical means of feeding in animal husbandr
109428, Moscow, 1-st Institutsky Pr., 5
References
1. Belyakov M.V. Opticheskie lyuminestsentnye svoistva semyan sel'skokhozyaistvennykh rastenii [Optical luminescent properties of agricultural seeds] // Agrofizika. 2024. № 4. S. 72–79. DOI: https://doi.org/10.25695/AGRPH.2024.04.09
2. Volkov D.P., Bashinskaya O.S., Zajcev S.A., Lyovkina A.Y., Babushkin D.D., Bychkova V.V., Kalinin Y.A. Tekhnologicheskij potencial zernobobovyh kul'tur [Technological potential of legumes] // AgroEkoInfo: Elektronnyj nauchno-proizvodstvennyj zhurnal. 2023. № 3(57). C. 1–13. DOI: 10.51419/202133305
3. Donskaya M.V., Bobkov S.V., Kostikova N.O. Otsenka kachestva zerna razlichnykh sortoobraztsov nuta [Estimation of grain quality of various chickpea varieties] // Zernobobovye i krupyanye kul'tury. 2021. № 1(37). S. 30–36. DOI: 10.24412/2309-348X-2021-1-30-36
4. Isakov N., Ajbek U.U. Problemy khraneniya zerna semyan [Grain and seed storage issues]// Vestnik Kyrgyzskogo nacional'nogo agrarnogo universiteta im. K.I. Skryabina. 2023. № 1(64). S. 35–42
5. Sazonova I.A., Bychkova V.V., Erohina A.V., Molchanov A.V., Zajcev S.A. Potencial zernobobovyh kul'tur kak vysokobelkovogo komponenta v kormoproizvodstve [Potential of legumes as a high-protein component in forage production] // Agrarnyj nauchnyj zhurnal. 2024. № 8. S. 103–107. DOI: 10.28983/asj.y2024i8pp103-107.
6. Cench Y.S. Nauchnotekhnicheskij potencial kak glavnyj faktor razvitiya mekhanizacii sel'skogo hozyajstva [Scientific and technical potential as a key factor in the development of agricultural mechanization] // Sel'skohozyajstvennye mashiny i tekhnologii. 2022. № 2(16). S. 4–13. DOI: 10.22314/2073-7599-2022-16-2-4-13.
7. Bankin M., Tykyrin Ya., Duk M., Samsonova M., Kozlov K. Modeling Chickpea Productivity with Artificial Image Objects and Convolutional Neural Network // Plants. 2024. Vol. 13, № 17. P. 2444. DOI: https://doi.org/10.3390/plants13172444
8. Cakmak Y.S., Boyacı I.H. Quality evaluation of chickpeas using an artificial neural network integrated computer vision system // International Journal of Food Science and Technology. 2011. Vol. 46, Iss. 1. P. 194–200. DOI: https://doi.org/10.1111/j.1365-2621.2010.02482.x
9. Di Francesco A., De Santis M.A., Lanzoni A., Pittala M.G.G., Saletti R., Flagella Z., Cunsolo V. Mass Spectrometry Characterization of the SDS-PAGE Protein Profile of Legumins and Vicilins from Chickpea Seed // Foods. 2024. Vol. 13, № 6. P.887. DOI: https://doi.org/10.3390/foods13060887
10. Indore N.S., Chaudhry M., Jayas D.S., Paliwal J., Karunakaran Ch. Non-Destructive Assessment of Microstructural Changes in Kabuli Chickpeas during Storage // Foods. 2024. Vol. 13, № 3. P. 433. DOI: https://doi.org/10.3390/foods13030433
Review
For citations:
Moskovsky M.N., Belyakov M.V., Efrremenkov I.Yu. Photoluminescent diagnostics of chickpeas. Grain Economy of Russia. 2025;17(6):5-10. (In Russ.) https://doi.org/10.31367/2079-8725-2025-101-6-5-10
JATS XML




























