Bioaccumulation of carboxylic acids in grain amaranth microgreens under the effect of zoohumus additives
https://doi.org/10.31367/2079-8725-2025-101-6-70-81
Abstract
The current study deals with the estimation of the effect of zoohumus extract, a new type of organic fertilizer obtained from the excrement of black soldier fly larvae (Hermetia illucens), on changes in the biochemical profile of grain amaranth microgreens using two ecologically adaptive varieties ‘Kharkovsky’ and ‘Voronezhsky’. The purpose of the current study was to comparatively analyze changes in the qualitative and quantitative bioaccumulation of organic, amino, and fatty acids in young plant seedlings grown under different fertilization conditions. The trial was conducted under controlled conditions in a grow tent for 7 days. The seeds were germinated in plastic trays filled with coconut fiber. The zoohumus additive at concentrations of 0.5, 1.0 and 3.0 % was compared to substrate moistened with a liquid three-component mineral fertilizer, traditionally used in hydroponics. The fertilizers were applied once, when the seeds were spread on the substrate surface. The variant with boiled tap water watering served as the control. The biochemical composition of the obtained green biomass was analyzed using capillary electrophoresis and gas chromatography-mass spectrometry (GC-MS). Using amino acids as an example there has been estimated the increase in nutritional value and adaptive potential of the obtained biomass through the redistribution of these components from seeds to young shoots. There was a maximum biomass increase for both varieties by 28 % relative to the control, when added zoohumus at a concentration of 1.0 %. With a mineral supplement, the increase of the variety ‘Kharkovsky’ was 11 % and that of the variety ‘Voronezhsky’ was 38 %. A concentration of 3.0 % has inhibited the growth, likely due to excess nutrients in the suspension. A difference in shoot height of 11% was established only for the variety ‘Voronezhsky’ in the variants when added organics. The variety ‘Voronezhsky’ has demonstrated better response to the organic additive with the total essential amino acids (EAAs) increase by 15–18 %, and the proportion of unsaturated fatty acids (UFAs), such as linoleic and α-linolenic, reached 80 % of the total FAs. Biochemical analysis has revealed a significant increase in oxalic acid content in both varieties when added zoohumus at concentrations of 1 and 3 %. The results were comparable to those obtained with mineral fertilizers. This is clearly related to the adaptation of plants to oxidative stress and calcium detoxification. Moreover, the variant with 0.5 % zoohumus demonstrated values close to the control, minimizing the risk of oxalate accumulation. The analysis of consistency indices has also confirmed that adding zoohumus at this concentration can ensure optimal coherence of the amino acid profile, making it closer to seed reference values. These results have practical implications for the development of organic farming, food industry, and development of functional foods with increased bioenergetic value. The variety ‘Voronezhsky’ is more suitable for organic hydroponics cultivation and functional food production.
About the Authors
S. I. LoskutovRussian Federation
S.I. Loskutov, Candidate of Agricultural Sciences, head of the laboratory for industrial biotechnological innovations
191014, Saint-Petersburg, Liteyny Av., 55
Ya. V. Pukhalsky
Russian Federation
Ya.V. Pukhalsky, researcher of the laboratory for industrial biotechnological innovations
191014, Saint-Petersburg, Liteyny Av., 55
N. I. Vorobiev
Russian Federation
N.I. Vorobiev, Candidate of Technical Sciences, leading researcher, Agricultural Microorganism Biodiversity Laboratory
196600, Saint-Petersburg, Pushkin, Podbelskiy Sh., 3
O. V. Astafieva
Russian Federation
O.V. Astafieva, Candidate of Biological Sciences, researcher, Bioresource Structural Processing Laboratory
191014, Saint-Petersburg, Liteyny Av., 55
A. I. Osipov
Russian Federation
A.I. Osipov, Doctor of Agricultural Sciences, professor, main researcher of the department of chemical melioration and experimental activities
195220, Saint-Petersburg, Grazhdanskiy pr, 14
A. I. Yakubovskaya
Russian Federation
A.I. Yakubovskaya, Candidate of Biological Sciences, leading researcher, head of the department of agricultural microbiology
295493, Republic of Crimea, Simferopol, Kievskaya Str., 150
V. R. Turkovskaya
Russian Federation
V.R. Turkovskaya, research engineer, Analytical Laboratory
195220, Saint-Petersburg, Grazhdanskiy pr, 14
I. A. Kameneva
Russian Federation
I.A. Kameneva, Candidate of Agricultural Sciences, leading researcher, head of the laboratory for physiology and ecology of microorganisms
295493, Republic of Crimea, Simferopol, Kievskaya Str., 150
V. V. Kosmin
Russian Federation
V.V. Kosmin, research engineer, Climate Testing Laboratory
196624, Saint-Petersburg, Valdayskaya Str., 9
M. P. Sakovich
Russian Federation
M.P. Sakovich, Company Director
196624, Saint-Petersburg, Valdayskaya Str., 9
References
1. Azizov I.K., Akhmadova G.A. Aminokislotnyi sostav semyan amaranta khvostatogo, proizrastayushchego v Uzbekistane [Amino acid composition of amaranth seeds grown in Uzbekistan] // Farmatsiya. 2021. № 7. S. 37–40. DOI: 10/29296/25419218-2021-07-06
2. Gish R.A. Amarant – kul'tura budushchego [Amaranth is the crop of the future] // Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2022. № 181. S. 83–92. DOI: 10.21515/1990-4665-181-008
3. Egorova E.Yu., Reznichenko I.Yu., Bochkarev M.S., Dorn G.A. Razrabotka novykh konditerskikh izdelii s ispol'zovaniem netraditsionnogo syr’ya [Development of new confectionery products using nontraditional raw materials] // Tekhnika i tekhnologiya pishchevykh proizvodstv. 2014. № 3(34). S. 31–38.
4. Pendyurin E.A., Zdorovtsov V.A., Rybina S.Yu., Svyatchenko A.V. Agrokhimicheskie kharakteristiki zookomposta lichinok nasekomogo chernaya l'vinka [Agrochemical characteristics of zoocompost of black lion fly larvae] // Agrokhimicheskii vestnik. 2024. № 3. S. 59–62. DOI: 10.24412/1029-2551-2024-3-010
5. Pendyurin E.A., Rybina S.Yu., Smolenskaya L.M. Ispol'zovanie zookomposta chernoi l'vinki v kachestve organicheskogo udobreniya [Use of zoocompost of black lion fly larvae as an organic fertilizer] // Agrarnaya nauka. 2020. № 7–8. S. 106–110. DOI: 10.32634/0869-8155- 2020-340-7-106-110
6. Pukhal'skii Ya.V., Loskutov S.I., Sidorova V.R., Yakubovskaya A.I., Meshcheryakov D.D., Kameneva I.A. Ispol'zovanie germikomposta Hermetia illucens v tekhnologii vyrashchivaniya mikrozeleni bobovykh kul'tur [Use of hermicompost of Hermetia illucens in legume microgreens cultivation] // Agrarnaya nauka. 2024. № 4. S. 101–107. DOI: 10.32634/0869-8155-2024-381-4-101-107
7. Sokolova D.V., Solov'eva A.E., Zaretskii A.M., Shelenga T.V. Potentsial kollektsii amaranta VIR v svete mirovykh tendentsii ispol'zovaniya i selektsii [Potential of the VIR amaranth collection according to the global trends in use and breeding] // Vavilovskii zhurnal genetiki i selektsii. 2024. № 28(7). S. 731–743. DOI: 10.18699/vjgb-24-81
8. Urubkov S.A., Khovanskaya S.S., Dremina N.V., Smirnov S.O. Analiz khimicheskogo sostava i pishchevoi tsennosti zernovogo syr'ya dlya proizvodstva produktov detskogo pitaniya [Analysis of the chemical composition and nutritional value of grain raw materials to produce baby food] // Pishchevaya promyshlennost'. 2018. № 8. S. 16–21.
9. Caselato-Sousa V.M., Amaya-Farfán J. State of knowledge on amaranth grain: a comprehensive review // Journal of Food Science. 2012. Vol. 77(4). P. 93–104. DOI: 10.1111/j.1750-3841.2012.02645.x
10. Chitale M., Palakodety S., Kihara D. Quantification of protein group coherence and pathway assignment using functional association // BMC Bioinformatics. 2011. Vol. 19(12). Р. 373. DOI: 10.1186/1471-2105-12-373.
11. Kaur N., Kaur S., Agarwal A., Sabharwal M., Tripathi A.D. Amaranthus crop for food security and sustainable food systems // Planta. 2024. Vol. 260 (3). Р. 59. DOI: 10.1007/s00425-024-04490-3
12. Li P., Liu C., Luo Y., Shi H., Li Q., PinChu C., Li X., Yang J., Fan W. Oxalate in Plants: Metabolism, Function, Regulation, and Application // Journal of Agricultural and Food Chemistry. 2022. Vol. 70(51). P. 16037–16049. DOI: 10.1021/acs.jafc.2c04787
13. Procopet O., Oroian M. Amaranth Seed Polyphenol, Fatty Acid and Amino Acid Profile // Applied Sciences. 2022. Vol. 12 (4). Article 2181. DOI: 10.3390/app12042181
14. Romano N., Fischer H., Powell A., Sinha A.K., Islam S., Deb U., Francis S. Applications of Black Solider Fly (Hermetia illucens) Larvae Frass on Sweetpotato Slip Production, Mineral Content and BenefitCost Analysis // Agronomy. 2022b. Vol. 12 (4). Article 928. DOI: 10.3390/agronomy12040928
15. Romano N., Powell A., Islam S., Fischer H., Renukdas N., Sinha A.K., Francis S. Supplementing aquaponics with black soldier fly (Hermetia illucens) larvae frass tea: effects on the production and composition of sweet potato slips and sweet banana peppers // Aquaculture. 2022a. Vol. 555. Article 738160. DOI: 10.1016/j.aquaculture.2022.738160
16. Skwaryło-Bednarz B., Stępniak P.M., Jamiołkowska A., Kopacki M., Krzepiłko A., Klikocka H. Amaranth seeds as a source of nutrients and bioactive substances in human diet // Acta Scientiarum Polonorum, Hortorum Cultus. 2020. Vol. 19(6). P. 153–164. DOI: 10.24326/asphc.2020.6.13
17. Toscano S., Cavallaro V., Ferrante A., Romano D., Patané C. Effects of Different Light Spectra on Final Biomass Production and Nutritional Quality of Two Microgreens // Plants. 2021. № 10. Article 1584. DOI: 10.3390/plants10081584
18. Zayed A., Adly G.M., Farag, M.A. Management Strategies for the Anti-nutrient Oxalic Acid in Foods: A Comprehensive Overview of Its Dietary Sources, Roles, Metabolism, and Processing // Food and Bioprocess Technology. 2025. Vol. 18. P. 4280–4300. DOI: 10.1007/s11947-024-03726-0
Review
For citations:
Loskutov S.I., Pukhalsky Ya.V., Vorobiev N.I., Astafieva O.V., Osipov A.I., Yakubovskaya A.I., Turkovskaya V.R., Kameneva I.A., Kosmin V.V., Sakovich M.P. Bioaccumulation of carboxylic acids in grain amaranth microgreens under the effect of zoohumus additives. Grain Economy of Russia. 2025;17(6):70-81. (In Russ.) https://doi.org/10.31367/2079-8725-2025-101-6-70-81
JATS XML




























