Digital support of agrotechnologies in the Southern Urals’ agriculture
https://doi.org/10.31367/2079-8725-2025-100-5-90-97
Abstract
The study was conducted among winter and spring wheat, winter rye, barley, sunflower, maize and soybean in the Central soil and climate zone of the Orenburg region in 2019–2024 to identify the efficiency of digital methods in managing the productivity of field crops.
Digital monitoring of the development of biological mass was carried out using the normalized difference vegetation index (NDVI) based on remote sensing Earth data (RS) and ground scanning with a hand-held sensor. The area of the assimilation surface of plants was determined by the weight method. When processing the digital material, there were used generally accepted methods of statistical analysis. The weather conditions corresponded to the aridity of the climate typical for the region, with increased heat resources and limited air moisture. With the sum of active (above 10 oC) temperatures of 3402 oC and 232 mm of precipitation, on average, Selyaninov HHC was 0.69 units during the study period. There has been established high intra-field heterogeneity of plant biomass, accompanied by spatial variability of productivity and gross harvests’ decrease. There has been determined acceptability of digital methods for expressing it in the form of NDVI mosaic. There has been identified a strong correlation between its value and the assimilation surface area (r = 0.86–0.89) and productivity of field crops (r = 0.79–0.83) according to elementary field plots. There have been substantiated prospects for forming a zonal (regional) base of optimal NDVI values characteristic of highly productive (reference) crops and the practical feasibility of their use in corrective agricultural practices in precision (digital) farming technologies. On the southern blackearth of the Orenburg region, with discrete application of mineral fertilizers, there has been found an increase from 0.64 to 0.79 units in the mean NDVI value in the spring wheat field, a decrease in the spatial variability of biomass and an increase in grain productivity by 0.32 t/ha or 22.6 % in comparison with the application of the entire fertilizer rate in a continuous manner in one go.
Keywords
About the Author
Yu. A. GulyanovRussian Federation
Doctor of Agricultural Sciences, professor, leading researcher
department of steppe studies and nature management
460000; Pionerskaya Str. 1; Orenburg
e-mail: orensteppe@mail.ru
References
1. Gulyanov Yu.A., Polyakov D.G. Zavisimost' fitometricheskikh parametrov polevykh agrotsenozov ot agrofizicheskikh pokazatelei pochvy [Dependence of phytometric parameters of field agrocenoses on agrophysical soil indicators] // Tavricheskii vestnik agrarnoi nauki. 2023. № 1(33). S. 19–33. DOI: 10.5281/zenodo.7898389
2. Eroshenko F. V., Bartalev S. A., Kulintsev V. V., Storchak I. G., Shestakova E. O., Simatin T. V. Vozmozhnosti regional'noi otsenki kachestva zerna ozimoi pshenitsy na osnove sputnikovykh dannykh distantsionnogo zondirovaniya [Opportunities of regional estimation of winter wheat grain quality based on satellite remote sensing data] // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017. T. 14, № 7. S. 153–165. DOI: 10.21046/2070-7401-2017-14-7-153-165
3. Zubarev Yu. N., Fomin D. S., Novikova T. V., Polyakova S. S., Fomin D. S. Primenenie dannykh distantsionnogo zondirovaniya Zemli s elementami tochnogo zemledeliya pri vozdelyvanii bobovo-zlakovykh smesei s raznym sootnosheniem komponentov [Application of remote sensing Earth data with elements of precision farming in the cultivation of legume-cereal mixtures with different ratios of components] // Permskii agrarnyi vestnik. 2023. № 1(41). S. 20–28. DOI: 10.47737/2307-2873_2023_41_20
4. Kiryushin V. I. Organizatsiya territorial'nogo i vnutrikhozyaistvennogo zemleustroistva na landshaftno-ekologicheskoi osnove [Organization of territorial and intra-agricultural management on a landscape-ecological basis] // Dostizheniya nauki i tekhniki APK. 2024. T. 38, № 5. S. 4–9. DOI: 10.53859/02352451_2024_38_5_4
5. Kremneva O. Yu., Kostenko I. A., Pachkin A. A., Danilov R. Yu., Ponomarev A. V., Kim Yu. S. Kartirovanie rasprostraneniya i razvitiya fitopatogenov na pshenitse i yachmene s ispol'zovaniem NextGIS [Mapping the spread and development of phytopathogens on wheat and barley using NextGIS] // Zernovoe khozyaistvo Rossii. 2020. № 3. S. 61–66. DOI: 10.31367/2079-8725-2020-69-3-61-66
6. Popovich V. V., Dunaeva E. A. Monitoring i prognozirovanie urozhainosti sel'skokhozyaistvennykh kul'tur po dannym DZZ na urovne raionov Respubliki Krym [Monitoring and forecasting of agricultural crop productivity based on remote sensing data at the districts of the Republic of Crimea] // Tavricheskii vestnik agrarnoi nauki. 2024. № 2 (38). S. 140–152. DOI: 10.5281/zenodo.12200306
7. Shpanev A. M., Smuk V. V. Effektivnost' differentsirovannogo primeneniya gerbitsidov v posevakh ozimoi pshenitsy [Efficiency of differentiated use of herbicides in winter wheat crops] // Rossiiskaya sel'skokhozyaistvennaya nauka. 2020. № 4. S. 25–27. DOI: 10.31857/S2500262720040067
8. Yakushev V. P., Kanash E. V., Yakushev V. V., Matveenko D. A., Rusakov D. V., Blokhina S. Yu., Petrushin A. V., Mitrofanov E. P. Novye vozmozhnosti avtomatizatsii protsessa obnaruzheniya vnutripol'noi neodnorodnosti po giperspektral'nym snimkam i opticheskim kriteriyam [New possibilities for automating the process of detecting in-field heterogeneity using hyperspectral images and optical criteria] // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. T. 16, № 3. S. 24–32. DOI: 10.21046/2070-7401-2019-16-3-24-32
9. Acar E., Altun M. Classification of the agricultural crops using Landsat-8 NDVI parameters by support vector machine // Balkan journal of electrical and computer engineering. 2021. Vol. 9(1). P. 78–82. DOI: 10.17694/bajece.863147
10. Zhai W., Cheng Q., Duan F., Huang X., Chen Z. Remote sensing-based analysis of yield and water-fertilizer use efficiency in winter wheat management // Agricultural Water Management. 2025. Vol. 11, Article number: 109390. DOI: 10.1016/j.agwat.2025.109390
Review
For citations:
Gulyanov Yu.A. Digital support of agrotechnologies in the Southern Urals’ agriculture. Grain Economy of Russia. 2025;17(5):90-97. (In Russ.) https://doi.org/10.31367/2079-8725-2025-100-5-90-97




























