Preview

Grain Economy of Russia

Advanced search

Search for pyrenophorosis resistance allele Tsc2 in winter common wheat samples

https://doi.org/10.31367/2079-8725-2025-100-5-65-69

Abstract

   Winter common wheat is one of the most important food crops in Russia and worldwide. It plays a vital role in ensuring food safety. This makes it important to develop varieties resistant to dangerous foliar diseases such as pyrenophorosis. One of the key genes providing resistance to this disease is the gene Tsc2. Previously, the collection and breeding samples of the department of winter wheat breeding and seed production of the FSBSI “ARC “Donskoy” were not evaluated for pyrenophorosis resistance using molecular diagnostic methods.

   The purpose of the current work was to study collection and breeding material of winter common wheat to identify alleles of the pyrenophorosis resistance gene Tsc2.

   The analysis was conducted in the laboratory of cell breeding, dealing with marker-assisted breeding in 2023–2024.

   The objects of the study were 102 winter common wheat samples of varying ecological and geographical origins.

   To identify alleles of the pyrenophorosis resistance gene Tsc2, there has been used the molecular marker XBE444541. The samples were distributed according to allele size with 340 base pairs (bp) for the dominant, ToxB-sensitive type; 505 bp for the recessive, pathogen-resistant type. There has been established an extensive allelic diversity in several samples studied. There have been identified new alleles of 400, 450, and 490 base pairs in size. There has been identified a dominant allele of the gene Tsc2, associated with susceptibility to the ToxB toxin of the pyrenophorosis pathogen in 48 samples. Eleven samples have been found to carry the recessive allele tsc2, which is linked to disease resistance, but in a heterozygous allelic state (ASV 141, Vassa, SO 911, Grom, Liangxing 99, Fuimai 5, Voyazh, Univer, Fazenda, 591/20, and 1278/21). To improve winter common wheat resistance to pyrenophorosis, there has been recommended using samples carrying the allele tsc2in breeding programs.

About the Authors

N. N. Vozhzhova
FSBSI Agricultural Research Center “Donskoy”
Russian Federation

Candidate of Agricultural Sciences, senior researcher

laboratory for cell breeding

347740; Nauchny Gorodok Str., 3; Rostov region; Zernograd

e-mail: vniizk30@mail.ru



D. M. Marchenko
FSBSI Agricultural Research Center “Donskoy”
Russian Federation

Candidate of Agricultural Sciences, leading researcher

department of winter wheat breeding and seed production

347740; Nauchny Gorodok Str., 3; Rostov region; Zernograd

e-mail: vniizk30@mail.ru



References

1. Kim Yu. S., Volkova G. V. Zheltaya pyatnistost' list'ev pshenitsy: rasprostranenie, vredonosnost', rasovyi sostav (obzor) [Spackled yellows of wheat leaves: distribution, injuriousness, racial composition (review)] // Vestnik Ul'yanovskoi GSKhA. 2020. № 2(50). S. 105–116. DOI: 10.18286/1816-4501-2020-2-105-116

2. Kovalenko N. M., Shaidayuk E. L., Gul'tyaeva E. I. Kharakteristika ustoichivosti raionirovannykh sortov myagkoi pshenitsy k vozbuditelyu zheltoi pyatnistosti [Characteristics of resistance of regionalized common wheat varieties to the yellow leaf blotch pathogen] // Biotekhnologiya i selektsiya rastenii. 2022. № 5(2). S. 15–24. DOI: 10.30901/2658-6266-2022-2-o3

3. Kokhmetova A. M., Ali S., Sapakhova Z., Atishova M. N. Identifikatsiya genotipov-nositelei ustoichivosti k toksinam pirenoforoza PtrToxA i PtrToxB Pyrenophora tritici-repentis v kollektsii myagkoi pshenitsy [Identification of genotypes carrying resistance to the Pyrenophora tritici-repentis toxins PtrToxA and PtrToxB in a common wheat collection] // Vavilovskii zhurnal genetiki i selektsii. 2018. № 22(8). S. 978–986. DOI: 10.18699/VJ18.440

4. Malkanduev Kh. A., Shamurzaev R. I., Malkandueva A. Kh. Formirovanie urozhaya i kachestva zerna sortov ozimoi pshenitsy v zavisimosti ot predshestvennikov i uslovii vozdelyvaniya [Formation of productivity and grain quality in winter wheat varieties depending on forecrops and cultivation conditions] // Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN. 2022. № 3(107). S. 40–50. DOI: 10.35330/1991-6639-2022-3-107-40-50

5. Kokhmetova A. M., Atishova M. N., Kumarbaeva M. T., Leonova I. H. Fitopatologicheskii skrining i molekulyarnyi analiz germoplazmy pshenitsy iz Kazakhstana i CIMMYT na ustoichivost' k pirenoforozu [Phytopathological screening and molecular marker analysis of wheat germplasm from Kazakhstan and CIMMYT for resistance to tan spot] // Vavilovskii zhurnal genetiki i selektsii. 2019. № 23(7). S. 879–886. DOI: 10.18699/VJ19.562

6. Abeysekara N. S., Friesen T. L., Liu Z., McClean P. E., Faris J. D. Marker development and saturation mapping of the tan spot Ptr ToxB sensitivity locus Tsc2 in hexaploid wheat // Plant Genome. 2010. Vol. 3. P. 179–189. DOI: 10.3835/plantgenome2010.07.0017

7. Dadrasi A., Chaichi M., Nehbandani A., Soltani E., Nemati A., Salmani F., Heydari M., Yousefi A. R. Global insight into understanding wheat yield and production through Agro-Ecological Zoning // Scientific Reports. 2023. Vol. 13(1), Article number: 15898. DOI: 10.1038/s41598-023-43191-x

8. Faris J. D., Liu Z., Xu S. S. Genetics of tan spot resistance in wheat // Theoretical and Applied Genetics. 2013. Vol. 126(9). P. 2197–2217. DOI: 10.1007/s00122-013-2157-y

9. See P. T., Iagallo E. M., Oliver R. P., Moffat C. S. Heterologous expression of the Pyrenophora tritici-repentis effector proteins ToxA and ToxB, and the prevalence of effector sensitivity in Australian cereal crops // Frontiers in Microbiology. 2019. Vol. 10, Article number: 10.00182. DOI: 10.3389/fmicb.2019.00182

10. Singh G., Running K., Peters Haugrud A., Seneviratne S., Zhang Z., Szabo-Hever A., Acharya K., Liu Z., Dubcovsky J., Faris J. D. Towards the molecular cloning of tan spot susceptibility gene Tsc2 in wheat [abstract] // Plant and Animal Genome 30 Conference. 2022. Poster No. PE0550

11. Tran V. A., Aboukhaddour R., Strelkov I. S., Bouras N., Spaner D., Strelkov S. E. The sensitivity of Canadian wheat genotypes to the necrotrophic effectors produced by Pyrenophora tritici-repentis // Canadian Journal of Plant Pathology. 2017. Vol. 39(2). P. 149–162. DOI: 10.1080/07060661.2017.1339125

12. Wei B., Moscou M. J., Sato K., Gourlie R., Strelkov S., Aboukhaddour R. Identification of a locus conferring dominant susceptibility to Pyrenophora tritici-repentis in barley // Frontiers in Plant Science. 2020. Vol. 11, Article number: 158. DOI: 10.3389/fpls.2020.00158

13. Weith S., Ridgway H. J., Jones E. E. Determining the presence of host specific toxin genes, ToxA and ToxB, in New Zealand Pyrenophora tritici-repentis isolates, and susceptibility of wheat cultivars // New Zealand Plant Protection. 2021. Vol. 74(1). P. 20–29. DOI: 10.30843/nzpp.2021.74.11724

14. Wysocka K., Cacak-Pietrzak G., Feledyn-Szewczyk B., Studnicki M. The Baking quality of wheat flour (Triticum aestivum L.) obtained from wheat grains cultivated in various farming systems (Organic vs. Integrated vs. Conventional) // Applied Sciences. 2024. Vol. 14(5), Article number: 1886. DOI: 10.3390/app14051886

15. Yadav A., Sharma A., Kumar A., Yadav R., Kumar R. SSR based molecular profiling of elite cultivars of basmati rice (Oryza sativa L.) // Research Journal of Biotechnology. 2021. Vol. 16(12). P. 55–63. DOI: 10.25303/1612rjbt5563


Review

For citations:


Vozhzhova N.N., Marchenko D.M. Search for pyrenophorosis resistance allele Tsc2 in winter common wheat samples. Grain Economy of Russia. 2025;17(5):65-69. (In Russ.) https://doi.org/10.31367/2079-8725-2025-100-5-65-69

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8725 (Print)
ISSN 2079-8733 (Online)