Prospects for combining the methods of haploid biotechnology and genome editing to improve spiked grains of the Triticeae family (review)
https://doi.org/10.31367/2079-8725-2024-92-3-18-26
Abstract
Over the past few decades, haploid biotechnologies have become an integral part of breeding programs for many crops. Using the strategy of doubling haploids induced in the culture of gametic cells and tissues in vitro, through androgenesis, gynogenesis and distant hybridization, it became possible to significantly reduce the time for developing new varieties. Using the technology of doubled haploids, within one or two generations, it is possible to obtain aligned homozygous lines, which can both help speed up the breeding process and study several scientific and practical issues. Another promising tool for developing lines and samples with specified traits within several generations is genome editing (engineering) using various nuclease-based engineering complexes. The CRISPR/Cas9 genome editing technology, which came into use ten years ago, allows solving a wide variety of problems in plant functional genomics, including engineering resistance to biotic and abiotic stresses, improving productivity and product quality. The technology is better than the most known methods for improving varieties for the traits which have mono- or polygenic control, since it allows changing several genes simultaneously, which is important for polyploid species. An integral part of plant genome editing, as well as haploidogenesis technologies, is cell and tissue culture in vitro, which gives possibility for their combination. The combination of technologies allows producing homozygous plants with new gene-specific mutations, which improves genetic diversity and accelerates the selection of linear material with new economically valuable traits. The current review has summarized the experience of combining haploidy and genome editing methods in spiked grains of the Triticeae family. In addition to analyzing the current state, there have been considered the prospects for further development of technologies for obtaining haploids of wheat, barley, triticale, and rye with an edited genome.
About the Authors
A. V. ZhiltsovRussian Federation
junior researcher of the of the laboratory for cell biotechnologies of grain embryo genesis
143026, Moscow region, Odintsovsky region, Odintsovsky district, v. of Novoivanovskoe, Agrokhimikov Str., 6
A. A. Chekalin
Russian Federation
of the laboratory for cell biotechnologies of grain embryo genesis
143026, Moscow region, Odintsovsky region, Odintsovsky district, v. of Novoivanovskoe, Agrokhimikov Str., 6
O. V. Popova
Russian Federation
aboratory assistant-researcher of the laboratory for cell biotechnologies of grain embryo genesis
143026, Moscow region, Odintsovsky region, Odintsovsky district, v. of Novoivanovskoe, Agrokhimikov Str., 6
I. V. Duvanov
Russian Federation
researcher of the laboratory for cell biotechnologies of grain embryo genesis
143026, Moscow region, Odintsovsky region, Odintsovsky district, v. of Novoivanovskoe, Agrokhimikov Str., 6
D. N. Miroshnichenko
Russian Federation
Candidate of Biological Sciences, head of the laboratory
for cell biotechnologies of grain embryo genesis; senior researcher of the laboratory for plant genetic engineering
143026, Moscow region, Odintsovsky region, Odintsovsky district, v. of Novoivanovskoe, Agrokhimikov Str., 6; 127550, Moscow, Timiryazevskaya Str., 42
References
1. D'yachuk T. I., Akinina V.N., Zhilin S.V., Khomyakova O.V., Barnashova E.K., Kalashnikova E.V., Okladnikova V.P. Gaploidiya tritikale In vitro (obzor literatury) Triticale haploidy In vitro (review) // Zernovoe khozyaistvo Rossii. 2022. № 1. S. 39-45. DOI: 10.31367/2079-8725-2022-79-1-39-45
2. Zlobin N.E., Ternovoi V.V., Grebenkina N.A., Taranov V.V. Sdelat' slozhnoe proshche: sovremennyi instrumentarii dlya redaktirovaniya genoma rastenii [Making the complex simpler: modern tools for editing plant genomes] // Vavilovskii zhurnal genetiki i selektsii. 2017. T. 21, № 1. S. 104–111. DOI: 10.18699/VJ17.228
3. Kalinina N.V., Golovko S.G., Ionova E.V. Metody polucheniya gaploidov v kletochnoi selektsii ozimoi pshenitsy (obzor) [Methods for obtaining haploids in cell breeding of winter wheat (review)] // Zernovoe khozyaistvo Rossii. 2020. № 6. S. 56–63. DOI: 10.31367/2079-8725-2020-72-6-56-63
4. Kuluev B.R., Mikhailova E.V., Kuluev A.R., Galimova A.A., Zaikina E.A., Khlestkina E.K. Redaktirovanie genomov predstavitelei triby pshenitsevye s ispol'zovaniem sistemy CRISPR/Cas [Editing the genomes of wheat tribe representatives using the CRISPR/Cas system] // Molekulyarnaya biologiya. 2022. T. 56, № 6. S. 949–968. DOI: 10.31857/S0026898422060155
5. Miroshnichenko D.N., Shul'ga O.A., Timerbaev V.R., Dolgov S.V. Dostizheniya, problemy i perspektivy polucheniya netransgennykh rastenii s otredaktirovannym genomom [Achievements, problems, and prospects for obtaining non-transgenic plants with edited genomes] // Biotekhnologiya. 2019. T. 35, № 1. S. 3–26. DOI: 10.21519/0234-2758-2019-35-1-3-26
6. Ukhatova Yu.V., Erastenkova M.V., Korshikova E.S., Krylova E.A., Mikhailova A.S., Semilet T.V., Khlestkina E.K. Uluchshenie kul'turnykh rastenii pri pomoshchi sistemy CRISPR/Cas: novye geny-misheni [Improvement of crop plants using the CRISPR/Cas system: new target genes] // Molekulyarnaya biologiya. 2023. T. 57, № 3. S. 387–410. DOI: 10.31857/S0026898423030151
7. Bhowmik P.K., Islam M.T. CRISPR-Cas9-Mediated gene editing in wheat: A step-by-step protocol // In book: CRISPR-Cas Methods: Springer Protocols Handbooks. Humana. New York. 2020. P. 203–222. DOI: 10.1007/978-1-0716-0616-2_13
8. Bhowmik P., Ellison E., Polley B., Bollina V., Kulkarni M., Ghanbarnia K., Kagale S. Targeted mutagenesis in wheat microspores using CRISPR/Cas9 // Scientific reports. 2018. Vol. 8, Article number: 6502. DOI: 10.1038/s41598-018-24690-8
9. Bilichak A., Sastry-Dent L., Sriram S., Simpson M., Samuel P., Webb S., Eudes F. Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cellpenetrating peptide complexes // Plant Biotechnology Journal. 2020. Vol. 18, Iss. 5. P. 1307–1316. DOI: 10.1111/pbi.13296
10. Budhagatapalli N., Halbach T., Hiekel S., Büchner H., Müller A.E., Kumlehn J. Sitedirected mutagenesis in bread and durum wheat via pollination by cas9/guide RNA-transgenic maize used as haploidy inducer // Plant Biotechnology Journal. 2020. Vol. 18, Iss. 12. P. 2376–2378. DOI: 10.1111/pbi.13415
11. Deimling S., Flehinghaus-Roux T. Haploidy in rye // In vitro haploid production in higher plants. Current Plant Science and Biotechnology in Agriculture / Еd. by S.M. Jain, S.K. Sopory, R.E. Veilleux. Springer, Dordrecht. 1997. Vol. 26, P. 181–204. DOI: 10.1007/978-94-017-1862-2_10
12. Gaj T., Sirk S. J., Shui S.L., Liu J. Genome-editing technologies: principles and applications // Cold Spring Harbor perspectives in biology. 2016. Vol. 8, Iss. 12. Article number: a023754. DOI: 10.1101/cshperspect.a023754
13. Gurushidze M., Hensel G., Hiekel S., Schedel S., Valkov V., Kumlehn J. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells // PloS one. 2014. Vol. 9, Iss. 3. Article number: e92046. DOI: 10.1371/journal.pone.0092046
14. Gurushidze M., Hiekel S., Otto I., Hensel G., Kumlehn J. Site-directed mutagenesis in barley by expression of TALE nuclease in embryogenic pollen // Biotechnologies for Plant Mutation Breeding / ed. by J. Jankowicz-Cieslak, T. Tai, J. Kumlehn, B. Till. Springer, Cham. 2017. P. 113–128. DOI: 10.1007/978-3-319-45021-6_7
15. Hale B., Ferrie A.M., Chellamma S., Samuel J.P., Phillips G.C. Androgenesis-based doubled haploidy: Past, present, and future perspectives // Frontiers in Plant Science. 2022. Vol. 12, Article number: 751230. DOI: 10.3389/fpls.2021.751230
16. Han Y., Broughton S., Liu L., Zhang X.Q., Zeng J., He X., Li C. Highly efficient and genotypeindependent barley gene editing based on anther culture // Plant communications. 2021. Vol. 2, Iss. 2. Article number: 100082. DOI: 10.1016/j.xplc.2020.100082
17. Hoffie R.E., Otto I., Hisano H., Kumlehn J. Site-directed mutagenesis in barley using RNAguided Cas endonucleases during microspore-derived generation of doubled haploids // Doubled Haploid Technology: Methods in Molecular Biology / ed. J.M. Segui-Simarro. Humana. New York. 2021. Vol. 2287, P. 199–214. DOI: 10.1007/978-1-0716-1315-3_9
18. Hoffie R.E., Perovic D., Habekuß A., Ordon F., Kumlehn J. Novel resistance to the Bymovirus BaMMV established by targeted mutagenesis of the PDIL5-1 susceptibility gene in barley // Plant Biotechnology Journal. 2023. Vol. 21, Iss. 2. P. 331–341. DOI: 10.1111/pbi.13948
19. Karmacharya A., Li D., Leng Y., Shi G., Liu Z., Yang S., Zhong S. Targeting disease susceptibility genes in wheat through wide hybridization with maize expressing Cas9 and guide RNA // Molecular PlantMicrobe Interactions. 2023. Vol. 36, Iss. 9. P. 554–557. DOI: 10.1094/MPMI-01-23-0004-SC
20. Kelliher T., Starr D., Su X., Tang G., Chen Z., Carter J., Que Q. One-step genome editing of elite crop germplasm during haploid induction // Nature biotechnology. 2019. Vol. 37, Iss. 3. P. 287–292. DOI: 10.1038/s41587-019-0038-x
21. Massiah A., Rong H.L., Brown S., Laurie S. Accelerated production and identification of fertile, homozygous transgenic wheat lines by anther culture // Molecular Breeding. 2001. Vol. 7, P. 163–173. DOI: 10.1023/A:1011308916226
22. Miroshnichenko D., Timerbaev V., Divashuk M., Pushin A., Alekseeva V., Kroupin P., Dolgov S. CRISPR/Cas9-mediated мultiplexed multi-allelic mutagenesis of genes located on A, B and R subgenomes of hexaploid triticale // Plant Cell Reports. 2024. Vol. 43, Article number: 59. DOI: 10.1007/s00299-023-03139-x
23. Ohnoutková L., Vlčko T. Homozygous transgenic barley (Hordeum vulgare L.) plants by anther culture // Plants. 2020. Vol. 9, Iss. 7. Article number: 918. DOI: 10.3390/plants9070918
24. Tang Q., Wang X., Jin X., Peng J., Zhang H., Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding // Plants. 2023. Vol. 12, Iss. 17. Article number: 3119. DOI: 10.3390/plants12173119
Review
For citations:
Zhiltsov A.V., Chekalin A.A., Popova O.V., Duvanov I.V., Miroshnichenko D.N. Prospects for combining the methods of haploid biotechnology and genome editing to improve spiked grains of the Triticeae family (review). Grain Economy of Russia. 2024;16(3):18-26. (In Russ.) https://doi.org/10.31367/2079-8725-2024-92-3-18-26