Preview

Grain Economy of Russia

Advanced search

The use of spore-catching equipment detecting diseases of grain crops (review)

https://doi.org/10.31367/2079-8725-2023-84-1-94-98

Abstract

In order to manage the phytosanitary situation on the sowings and get the maximum yields of high quality, at first it is necessary to estimate the condition of the protected crop. Based on this estimation, in future it is possible to establish the most effective and economically justified protection system. Grain crops are the most important strategic crops that ensure food security around the world. According to the FAO the world crop losses caused by pests have reached up to 40 % where fungal pathogens have played the most significant role. Therefore, the most important task of phytosanitary monitoring is the timely detection and identification of the disease before the beginning of symptoms at the earliest stages of pathogen development, which becomes possible when the infectious beginning of the disease has been detected. When monitoring fungal diseases, spore-catching equipment allow this issue to be solved. The purpose of the current review was to describe the existing developments of spore-catching equipment for monitoring grain crop diseases and to identify promising areas for using devices on crops to improve protective measures’ efficiency. The introduction has briefly described the classical methods of monitoring and the relatively new methods currently used. In the main part there has been considered a spore-catching equipment developed and used both in foreign and domestic practice. There have been analyzed the methods of using spore-catching equipment and given the examples of the use of these devices in monitoring crop diseases. In the conclusions there have been summarized the trends in the development of technical support for phytosanitary monitoring and shown areas that have been found promising for further research.

About the Authors

O. Yu. Kremneva
Federal State Budgetary Scientific Institution «Federal Research Center of Biological Plant Protection»
Russian Federation

leading researcher, head of the laboratory  for phytosanitary monitoring of agroecosystems

350039, Krasnodar Kray, Krasnodar, p/о 39



K. E. Gasiyan
Federal State Budgetary Scientific Institution «Federal Research Center of Biological Plant Protection»
Russian Federation

junior researcher, postgraduate student

350039, Krasnodar Kray, Krasnodar, p/о 39



References

1. Bogdanova V. V., Evseev V. V., Goloshchapov A. K. Novyi podkhod k monitoringu aerogennoi infektsii zernovykh kul'tur [A new approach to monitoring aerogenic infection of grain crops] // Zashchita i karantin rastenii. 2010. № 8. S. 47–48.

2. Gasiyan K. E., Kremneva O. Yu., Gaponenko A. A. Sravnitel'nye ispytaniya statsionarnoi i portativnoi sporolovushek na posevakh pshenitsy [Comparative tests of stationary and portable spore traps on wheat crops] // Biologicheskaya zashchita rastenii - osnova stabilizatsii agroekosistem: materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Krasnodar, 13–15 sentyabrya 2022 g. Vyp. 11. Krasnodar: Izdatel'stvo «EDVI», 2022. S. 139–146.

3. Kremneva O. Yu., Gasiyan K. E., Zelenskii R. A., Selivanov V. G. Ispytanie probootbornika vozdukha PSL-3 dlya distantsionnogo obnaruzheniya vozbuditelei boleznei ozimoi pshenitsy [Testing of air sampler PSL-3 for remote detection of winter wheat pathogens] // Tekhnika i oborudovanie dlya sela. 2020. № 11(281). S. 9–11. DOI: 10.33267/2072-9642-2020-11-9-11.

4. Kremneva O. Yu., Kostenko I. A., Pachkin A. A., Danilov R. Yu., Ponomarev A. V., Kim Yu. S. Kartirovanie rasprostraneniya i razvitiya fitapatogenov na pshenitse i yachmene s ispol'zovaniem NEXTGIS [Mapping the distribution and development of phytopathogens on wheat and barley using NEXTGIS] // Zernovoe khozyaistvo Rossii. 2020. № 3(69). S. 61–66. DOI: 10.31367/2079-8725-2020-69-3-61-66.

5. Sporoulavlivatel' dlya sbora infektsionnogo nachala fitopatogennykh gribov s poverkhnosti rastenii [Spore catching equipment for collecting the infectious beginning of phytopathogenic fungi from the surface of plants] / Safin R. I., Valiev A. R., Karimova L. Z., Validov Sh. Z., Nizamov R. M., Ziganshin B. G., Filippova E. A., Sabirov R. F. Patent № 184233 Rossiiskaya Federatsiya. Zayavka 2018112097, 2018.04.03; opubl. 2018.10.18.

6. Sokolov Yu. G., Sadkovskii V. T., Kremneva O. Yu., Danilov R. Yu., Pachkin A. A., Zelenskii R. A., Kurilov A. A. Razrabotka tekhnologii obnaruzheniya ochagov rzhavchinnykh boleznei pshenitsy [Development of technology for detecting foci of wheat rust diseases] // Mezhdunarodnyi nauchnoissledovatel'skii zhurnal. 2018. № 12–2(78). S. 29–33. https://doi.org/10.23670/IRJ.2018.78.12.042.

7. Ali M. M., Bachik N. A., Muhadi N. A., Yusof T. N. T., Gomes Ch. Non-destructive techniques of detecting plant diseases: A review // Physiological and Molecular Plant Pathology. 2019. Vol. 108, Article number 101426. https://doi.org/10.1016/j.pmpp.2019.101426.

8. Araujo G. T., Amundsen E., Frick M., Gaudet D. A., Aboukhaddour R., Selinger B., Thomas J., Laroche A. Detection and quantification of airborne spores from six important wheat fungal pathogens in southern Alberta // Canadian Journal of Plant Pathology. 2021. Vol. 43(3), P. 439–454. https://doi.org/10.1080/07060661.2020.1817795.

9. Carvalho E., Sindt Ch., Verdier A., C. Galán, O’Donoghue L., Parks S., Thibaudon M. Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains // Aerobiologia. 2008. Vol. 24(4), P. 191–201. https://doi.org/10.1007/s10453-008-9098-y.

10. Kremneva O. Yu., Gasiyan K. E., Ponomarev A. V., Kokhmetova A. and Novoseletsky S. I. Influence of the tillage method on the development of leaf diseases of winter wheat // E3S Web of Conferences. International Conference on Advances in Agrobusiness and Biotechnology Research (ABR 2021). Krasnodar, 2021. https://doi.org/10.1051/e3sconf/202128502027.

11. Mahlein A.-K. Plant Disease Detection by Imaging Sensors – Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping // Plant Disease. 2016. P. 241–25. https://doi.org/10.1094/PDIS-03-15-0340-FE.

12. Nagasubramanian K., Jones S., Singh A.K., Sarkar S., Singh A., Ganapathysubramanian B. Plant disease identification using explainable 3D deep learning on hyperspectral images // Plant Methods. 2019. Vol. 15. Article number 98. https://doi.org/10.1186/s13007-019-0479-8.

13. Orr C. J., Gordon M. T., Kordecki M. C. Thermal precipitation for sampling air-borne microorganisms: comparison with other methods // Applied and Environmental Microbiology Journal. 1956. Vol. 4(3). P. 116–118. DOI: 10.1128/am.4.3.116-118.1956.

14. Singh V., Sharma N., Singh S. A review of imaging techniques for plant disease detection // Artificial Intelligence in Agriculture. 2020. Vol. 4(4), P. 229–242. https://doi.org/10.1016/j.aiia.2020.10.002.

15. West J. S. Innovations in air sampling to detect plant pathogens // Annals of Applied Biology. 2015. Vol. 166, P. 4–17. https://doi.org/10.1111/aab.12191.


Review

For citations:


Kremneva O.Yu., Gasiyan K.E. The use of spore-catching equipment detecting diseases of grain crops (review). Grain Economy of Russia. 2023;(1):94-98. (In Russ.) https://doi.org/10.31367/2079-8725-2023-84-1-94-98

Views: 218


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8725 (Print)
ISSN 2079-8733 (Online)