Preview

Grain Economy of Russia

Advanced search

Triticale haploidy in vitro (literature review)

https://doi.org/10.31367/2079-8725-2022-79-1-39-45

Abstract

Triticale (× Triticosecale Wittmack) is a hybridized grain crop developed from wheat and rye crossings. Today, triticale is a multipurpose commercial grain crop with great potential as a human food and animal feed. The sown area of the new grain crop in the world reached 4 million hectares in 2018, grain production was about 14 million tons. The current climate change, the rapid evolution of pathogens, as well as the requirements of the modern market dictate the necessity for accelerated development of varieties while reducing the cost of their development. The production of double haploids makes it possible to reduce the time required for the development of homozygous lines by an average of 5–7 years. For the mass production of haploid triticale plants in vitro, there are used two methods, namely anther/microspore culture and distant hybridization followed by selective chromosome elimination of the pollinator. The most critical factors for the success of developing haploids in anther culture are a genotype, growing conditions of donor plants, a microspore development stage, stress effects on heads or anthers, and a nutrient media. Among the unresolved problems of the method are a genotypic dependence, a high incidence of albinism and a presence of aneuploids in the androgenic plant progeny. The rye genome is more often involved in chromosomal transformations than the wheat genome. Most aneuploids are nullisomics, most often on the 2R and 5R chromosomes. Nullisomic plants for 2R and 5R chromosomes have fewer number of spikelets per head and fewer number of kernels per head. In order to develop haploids by the method of selective chromosome elimination during distant hybridization, there have been successfully used such grain crops whose pollen is insensitive to Kr-genes, as maize (Zea mays L.) and wild cereal grass ‘Imperata Cylindrical’ (Imperata cylindrical L.). The advantages of the method are less genotypic dependence, absence of albino plants, genetic stability of regenerants, and reduced costs for developing haploid plants. The length of flowering period of ‘Imperata Cylindrical’ and the absence of the need to combine the timing of flowering period of the parents ensure the economy and efficiency of using this species when developing haploid triticale plants. The purpose of the current review was to characterize the methods of mass development of haploid triticale plants, to describe their advantages and disadvantages when being used in the breeding process.

About the Authors

T. I. Diyachuk
Federal State Budget Scientific Institution “Federal Agricultural Research Center of South-East”
Russian Federation

Doctor of Biological Sciences, main researcher of the laboratory for cell breeding

410010, Saratov, Tulaykov Str., 7



V. N. Akinina
Federal State Budget Scientific Institution “Federal Agricultural Research Center of South-East”
Russian Federation

Candidate of Biological Sciences, senior researcher of the laboratory for cell breeding,

410010, Saratov, Tulaykov Str., 7



S. V. Zhilin
Federal State Budget Scientific Institution “Federal Agricultural Research Center of South-East”
Russian Federation

research assistant of the laboratory for cell breeding

410010, Saratov, Tulaykov Str., 7



O. V. Khomyakova
Federal State Budget Scientific Institution “Federal Agricultural Research Center of South-East”
Russian Federation

Candidate of Biological Sciences, senior researcher of the laboratory for cell breeding

410010, Saratov, Tulaykov Str., 7



Е. К. Barnashova
Federal State Budget Scientific Institution “Federal Agricultural Research Center of South-East”
Russian Federation

Candidate of Biological Sciences, researcher of the laboratory for cell breeding

410010, Saratov, Tulaykov Str., 7



E. V. Kalashnikova
Federal State Budget Scientific Institution “Federal Agricultural Research Center of South-East”
Russian Federation

junior researcher of the laboratory for cell breeding

410010, Saratov, Tulaykov Str., 7



V. P. Okladnikova
Federal State Budget Scientific Institution “Federal Agricultural Research Center of South-East”
Russian Federation

junior researcher of the laboratory for cell breeding

410010, Saratov, Tulaykov Str., 7



References

1. Grabovec A.I., Krohmal' A.V. Tritikale [Triticale]. Rostov-na-Donu: OOO «Izdatel'stvo «YUg», 2019. 240 s.

2. Ignatova S.A. Kletochnye tekhnologii v rastenievodstve, genetike i selekcii vozdelyvaemyh rastenij: zadachi, vozmozhnosti, razrabotki sistem in vitro [Cell technologies in plant production, genetics and plant breeding: tasks, opportunities, systems in vitro]. Odessa: Astroprint, 2011. 224 s.

3. Gonzalez J.M., Muniz L.M., Jouve N. Mapping of QTLs for androgenetic response based on a molecular genetic map of × Triticosecale Wittmack // Genome. 2005. Vol. 48. Pp. 999–1009.

4. Gosal S.S, Wani S.H. Cell and tissue culture approaches in relation to crop improvement // Biotechnologies of Crop Improvement. 2018. Vol. 1. Pp. 1–42. DOI: 10.1007/978-3-319-78283-6_1.

5. Inagaki M.N., Nagamine T., Mujeeb-Kazi A. Use of pollen storage and detached pollen culture in wheat polyhaploid production through wide crosses // Cereal Research Com. 1997. Vol. 25. Pp. 7–13.

6. Kishore N., Chaudhari K.K., Chahota RF. Relative efficiency of the maize-and Imperata cylindricamediated chromosome elimination approaches for induction of haploids in wheat-rye derivatives // Plant Breed. 2011. Vol. 130. Pp. 192–194.

7. Kohli A., Sreenivasulu N., Lakshmanan P, Kumar P.P. The phytohormone crosstalk paradigm takes centre stage in understanding how plants respond to abiotic stress // Plant Cell Rep. 2013. Vol. 32. Pp. 945–957. DOI: 10.1007/s00299-013-1461-y.

8. Krzewska M., Czyczylo-Mysza I., Dubas E., Golebiowska-Pikania G., Golemiec E., Stojalowski S., Chrupek M., Zur I. Quantitative trait loci associated with androgenetic responsiveness in triticale (×Triticosecale Wittm.) // Plant Cell Rep. 2012. Vol. 31. Pp. 2099–2108. DOI: 10.1007/s 00299-012-1320-2.

9. Krzewska M., Czyczyto-Mysza I., Dubas E., Golebiowska-Pikania G., Zur I. Identification of QTLs associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (x Triticosecale Wittm.) anther culture // Euphytica. 2015. Vol. 206. Pp. 263–278. DOI: 10.1007/s10681-015-1509-x.

10. Krzewska M., Golebiowska-Pikania G., Dubas E., Gawin M., Zur I. Identification of proteins related to microspore embryogenesis responsiveness in anther cultures of winter triticale (× Triticosecale Wittm.) // Euphytica. 2017. Vol. 213. Pp. 1-17. DOI: 10.1007/s10681-017-1978-1.

11. Kwiatek M., Banaszak Z., Skowroriska R., Kurasiak-Popowska D., Mikotajczyk S., Niemann J., Tomkowiak A., Weigt D., Nawracata J. Spike morphology alternations in androgenetic progeny of hexaploid triticale (x Triticosecale Wittmack) caused by nullisomy of 2R and 5R chromosomes // In vitro Cellular and Developmental Biology – Plant. 2020. Vol. 56. Pp. 150–158. DOI: 10.1007/s11627-019-10021-7.

12. Lantos C., Bona L., Boda K., Pauk J. Comparative analysis of in vitro anther-and isolated microspore culture in hexaploid Triticale (x Triticosecale Wittmack) for androgenesis parameters // Euphytica. 2014. Vol. 197. Pp. 27–37. DOI: 10.1007/s10681-013-1031-y.

13. Losert D., Mauer H.P., Marulanda J., Wurschum T. Phenotypic and genotypic analyses of diversity and breeding progress in Europen triticale (x Triticosecale Wittmack) // Plant Breed. 2017. Vol. 136. Pp. 18–27. DOI: 10:1111/pbr.12433.

14. Machczynska J., Orlowska R., Mankowski D.R., Zimny J., Bednarek P.T. DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction // Plant Tissue Organ Cult. 2014. DOI: 10.1007/s11240-014-0533-1.

15. Mergoum M., Sapkota S., ElFatih A., Naraghi S.M., Pirseyedi S., Alami M.S., and AbuHammad W. Triticale (× Triticosecale Wittmack) Breeding // J.M. Al-Khayri et al (eds.). Advances in Plant Breeding Strategies: Cereals. Springer Nature Switzerland. 2019. Pp. 405–451. DOI: 10.1007/978-3-030-23108-8_11.

16. Mukai Y., Okamoto G., Kiryu S. et al. The D-genome plays a critical role in the formation of haploid Aegilops tauschii through Imperata cylindrica mediated uniparental chromosome elimination // Nucleus. 2015. Vol. 58(3). Pp. 199–206.

17. Oleszezuk S., Sova S., Zimny J. Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (× Triticosecale Wittmack) cv. Bogo // Plant Cell Rep. 2004. Vol. 22. Pp. 885–893. DOI: 10.1007/s00299-004-0796-9.

18. Oleszezuk S., Rabiza-Swidet J., Lukaszewski A.J. Aneuploidy among androgenic progeny of hexaploid triticale (× Triticosecale Wittmack) // Plant Cell Rep. 2011. Vol. 30. Pp. 575–586.

19. Oleszezuk S., Tyrka M., Zimny J. The origin of clones among androgenetic regenerants of hexaploid triticale // Euphytica. 2014. Vol. 198. Pp. 325–336. DOI:10.1007/s10681-014-1109-1.

20. Pratap A., Sethi G.S., Chaudhary H.K. Relative efficiency of different Graminea genera for haploid induction in triticale and triticale x wheat hybrids through the chromosome elimination technique // Plant Breeding. 2005. Vjl.124. P. 147–153.

21. Sanie M, Pickering R, Kumke K et al. Loss of centromeric histone H3(CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids // Proc. Nat.Acad. Sci. 2011. Vol. 108. Pp. 498–505. DOI:10.1073/pnas.1103190108.

22. Slusarekiewicz-Jarzina A., Pudelska H., WoznaJ., Pniewski T. Improved production of doubled haploids of winter and spring triticale hybrids via combination of colchicines treatments of anthers and regenerated plants // J. Appl. Genetics. 2017. Vol. 58. Pp. 287–295. DOI: 10.1007/s13353-016-0387-9.

23. Srivastava P, Singh N.B. Acceleration wheat breeding: doubled haploids and rapid generation advance // Gosal S.S., Wani S.H.(eds.). Biotechnologies of Crop Improvement. 2018. Vol. 1. Pp. 437–461. DOI: 10.1007.978-3-319-78283-6_3.

24. Touraev A., Vicente O. and Heberle-Bors E. Initiation of embryogenesis by stress // Trends Plant Science. 1997. Vol. 2(8). Pp. 297–303.

25. Wedzony M., Zur I., Krzewska M., Dubas E., Szechynska-Hebda M. and Wasek I. Doubled Haploids in Triticale // Eudes F. (ed.). Triticale. Springer International Publishing Switzerland. 2015. Pp. 111–128. DOI 10.1007/978-3-319-22551-7_6.

26. Wurschum T., Tucker M.R., Reif J., Maurer H.P. Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling // BMC Plant Biology. 2012. Vol. 12. P. 109. http://www.biomedcentral.com/1471-2229/12/109.

27. Wurschum T., Tucker M.R., Maurer H.P. Stress influence efficiency of microspore embryogenesis and green plant regeneration in hexaploid triticale // In vitro Cell Dev. Biol. 2014. Vol. 50. Pp. 143–148. DOI: 10.1007/s11627-013-9539-3.

28. Zur I., Dubas E., Golemiec E., Szechynska-Hebda M., Janowiak F., Wędzony M. Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (× Triticosecale Wittm.) // Plant Cell Tissue Organ Cult. 2008. Vol. 94. Pp. 319–328. DOI 10.1007/s11240-008-9360-6.

29. Zur I., Dubas E., Krzewska M., Kopec P., Nowicka A., Surowka E., Gawronska K., Golebiowska G., Juzon K., Malaga S. Triticale and barley microspore embryogenesis induction requires both reactive oxygen species generation and efficient system of antioxidative defence // Plant cell, Tissue and Organ Culture. 2021. 145. Pp.347–366. DOI: 10.1007/s11240-021-02012-7.


Review

For citations:


Diyachuk T.I., Akinina V.N., Zhilin S.V., Khomyakova O.V., Barnashova Е.К., Kalashnikova E.V., Okladnikova V.P. Triticale haploidy in vitro (literature review). Grain Economy of Russia. 2022;(1):39-45. (In Russ.) https://doi.org/10.31367/2079-8725-2022-79-1-39-45

Views: 377


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8725 (Print)
ISSN 2079-8733 (Online)