СЕЛЕКЦИЯ И СЕМЕНОВОДСТВО СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАСТЕНИЙ

УДК 633.15:631.52

DOI 10.31367/2079-8725-2018-60-6-32-36

АНАЛИЗ КОЛИЧЕСТВЕННЫХ ПРИЗНАКОВ У САМООПЫЛЕННЫХ ЛИНИЙ ВОСКОВИДНОЙ КУКУРУЗЫ (ZEA MAYS L. CERATINA)

Г. Я. Кривошеев, кандидат сельскохозяйственных наук, ведущий научный сотрудник лаборатории селекции и семеноводства кукурузы, genadiy.krivosheev@mail.ru, ORCID ID: 0000-0002-5876-7672;

А. С. Игнатьев, кандидат сельскохозяйственных наук, старший научный сотрудник лаборатории селекции и семеноводства кукурузы, ignatev1983@rambler.ru, ORCID ID: 0000-0002-0319-4600 ФГБНУ «Аграрный научный центр «Донской»,

347740, Ростовская обл., г. Зерноград, Научный городок, 3; e-mail: vniizk30@mail.ru

Проведено изучение 34 новых самоопыленных линий подвида восковидной кукурузы (Zea mays L. ceratina) по урожайности зерна и элементам структуры урожая. Элементы структуры различались по влиянию на формирование урожая зерна самоопыленных линий. Наибольшее значение имели признаки «количество початков на 1 растении», «количество зерен на початке», «количество рядов зерен». Наименее значимым оказался признак «масса 1000 зерен». На основе корреляционного анализа и анализа графиков поверхностей установлена возможность сочетания у линий восковидной кукурузы высоких значений взаимодополняющих признаков. Между признаками «количество початков на 1 растении» и «масса 1 початка» в 2015–2017 гг. зависимость отсутствовала ($r = -0.17 \pm 0.17 \dots \pm 0.16 \pm 0.17$). Урожайность зерна линий увеличивалась пропорционально увеличению массы початка и количеству початков на 1 растении. Между признаками «масса 1000 зерен» и «количество зерен на початке» в 2015 г. отмечалась средняя отрицательная зависимость $(r = -0.37 \pm 0.16)$, а в 2016 и 2017 гг. зависимость отсутствовала $(r = -0.12 \pm 0.18, r = -0.10 \pm 0.18)$. Максимальная урожайность зерна линий формировалась при сочетании максимальных значений признаков (масса 1000 зерен - 241 г; количество зерен на початке – 540 шт.). Установлена тенденция к увеличению количества зерен в ряду с увеличением рядов зерен (r = 0,18±0,17...0,32±0,17). Наибольшую урожайность зерна линии формировали при максимальном количестве рядов зерен (18 шт.) и оптимальном (30 шт.) количестве зерен в ряду. Между массой 1 початка и выходом зерна с початка не выявлено зависимости (r = -0,18±0,17...+0,27±0,17). Сочетание максимальных значений признаков продуктивности способствовало формированию максимальной урожайности зерна. Выделены новые самоопыленные линии восковидной кукурузы – 24/78, Wx2MP, 21/82 (1), 25/75 и другие с высокой урожайностью зерна (1,0-2,42 т/га) и высокими значениями признаков продуктивности.

Ключевые слова: восковидная кукуруза, самоопыленные линии, урожайность зерна, элементы структуры урожая зерна, корреляционный анализ, взаимодополняющие признаки.

THE ANALYSIS OF QUANTITATIVE TRAITS OF SELF-POLLINATED LINES OF WAXY MAIZE (ZEA MAYS L. CERATINA)

G. Ya. Krivosheev, Candidate of Agricultural Sciences, leading researcher of the laboratory of maize breeding and seed-growing, genadiy.krivosheev@mail.ru, ORCID ID: 0000-0002-5876-7672;

A. S. Ignatiev, Candidate of Agricultural Sciences, leading researcher of the laboratory of maize breeding and seed-growing, ignatev1983@rambler.ru, ORCID ID: 0000-0002-0319-4600 FSBSI "Agricultural Research Center "Donskoy",

347740, Rostov region, Zernograd, Nauchny Gorodok, 3; e-mail: vniizk30@mail.ru

The grain productivity and elements of yield structure of 34 new self-pollinated lines of the subspecies of waxy maize (*Zea mays L. ceratina*) have been studied. The elements of structure varied according to their effect on yield formation of these self-pollinated lines. The traits "number of cobs per plant", "number of kernels per cob", "number of rows with kernels" were of the great value, the trait "1000-kernels weight" was of the small value. The correlation analysis and the analysis of surface graphs identified the possibility to combine the largest values of complementary traits of the waxy maize lines. In 2015–2017 there was no any correlation between the traits "number of cobs per plant" and "weight of one cob" ($r = -0.17\pm0.17...+0.16\pm0.17$). Grain productivity of the lines increased proportionally to the increase of cob weight and a number of cobs per plant. In 2015 there was an average negative correlation between the traits "1000-kernels weight" and "number of kernels per cob" ($r = -0.37\pm0.16$), and in 2016–2017 there was no any correlation at all ($r = -0.12\pm0.18$, $r = -0.10\pm0.18$). The maximum productivity was formed at the combination of maximum values of the traits (241 g of "1000-kernels weight"; 540 pc. of "number of kernels per cob"). There was a tendency to the increase of a number of kernels together with the rise of kernel rows ($r = 0.18\pm0.17...0.32\pm0.17$). The largest productivity was formed at a maximum quantity of kernel rows (18 pc) and optimal quantity of kernels per row (30 pc). There was no correlation between "weight of one cob" and "number of kernel per cob" ($r = -0.18\pm0.17...+0.27\pm0.17$). The combination of the maximum values of the productivity traits promoted the formation of maximum grain yield. There have been identified the new self-pollinated lines of waxy maize "24/78", "Wx2MP", "21/82 (1)", "25/75" with high grain productivity (1.0–2.42 t/ha) and large values of the productivity traits.

Keywords: waxy maize, self-pollinated lines, grain productivity, elements of grain yield structure, correlation analysis, complementary traits.

Введение. Создание нового исходного материала, его оценка и подбор пар для скрещивания являются важнейшим условием результативности любого направления селекции гибридной кукурузы.

Отсутствие отечественных гибридов восковидной кукурузы обусловливает актуальность этого направления. Подвид восковидной кукурузы (*Zea mays L. ceratina*) интересен тем, что ее крахмал состоит полностью из амилопектина — ценного сырья для пищевой, технической промышленности и медицины (Шмараев, 1999).

Одна из причин, которая сдерживает выведение отечественных гибридов подвида восковидной кукурузы, — слабая изученность и малочисленность исходного материала (Кривошеев и Игнатьев, 2017). Отечественные исследователи до настоящего времени мало уделяли внимания изучению количественных признаков восковидной кукурузы. Изучение количественных признаков и моделирование их у сортов и гибридов сельскохозяйственных культур для конкретных природных условий повышают эффективность селекционной работы (Костылев и др., 2018). Особое значение имеют элементы структуры урожая зерна. Один из методов подбора пар для скрещивания — по взаимодополняющим элементам структуры (Образцов, 1978).

Цель исследований – изучение возможности сочетания максимальных значений взаимодополняющих элементов структуры урожая зерна у самоопыленных линий восковидной кукурузы, выделение высокоурожайных линий с высокими значениями признаков продуктивности.

Материалы и методы исследований. Полевые опыты проводили в 2015—2017 гг. в ФГБНУ «Аграрный научный центр «Донской» (АНЦ «Донской»), расположенном в южной зоне Ростовской области. Почва опытного участка представлена черноземом обыкновенным тяжелосуглинистым. Годы проведения исследований характеризовались как засушливые. Объектом исследований были взяты 34 новых константных (I_6) самоопыленных линии восковидной кукурузы ($Zea\ mays\ L.\ ceratina$), созданных в АНЦ «Донской».

Закладку опытов, учеты и наблюдения проводили согласно методическим рекомендациям по проведению полевых опытов с кукурузой (1980), методике государственной комиссии по сортоиспытанию сельскохозяйственных культур (1985). Метод размещения самоопыленных линий в полевых опытах — систематический со смещением.

Для оценки селекционного материала использовали Международный классификатор СЭВ вида Zea mays L. (1977). Статистическую обработку выполнили по Доспехову (1985), используя программу Statistika 10.0. Проведен корреляционный анализ количественных признаков и анализ графиков поверхностей.

Оценивали урожайность зерна самоопыленных линий кукурузы и элементы его структуры.

Результаты и их обсуждение. Самоопыленные линии восковидной кукурузы характеризовались разнообразием по величине урожая зерна и элементов продуктивности (табл. 1).

1. Статистические параметры количественных признаков самоопыленных линий восковидной кукурузы (2015–2017 гг.) 1. Statistic parameters of the quantitative traits of the self-pollinated lines of waxy maize (2015–2017)

Признак	Среднее значение (x)	Минимальное значение (x min)	Максимальное значение (х max)	Стандартное отклонение (S)	Коэффициент вариации (V), %
Урожайность зерна, т/га	1,06	0,56	2,42	0,47	44,3
Количество початков на 1 растении, шт.	0,72	0,43	0,99	0,12	16,7
Масса 1 початка, г	55,9	31	74	10,98	19,6
Масса 1000 зерен, г	182,1	147	241	22,63	12,4
Количество рядов зерен, шт.	14,6	13	18	1,41	9,7
Количество зерен в ряду, шт.	24,9	21	30	2,63	10,6
Количество зерен на початке, шт.	365	282	540	62,83	17,1
Выход зерна с початка, %	69,6	54,5	80,1	6,71	9,6

Наибольшее варьирование отмечено по признаку «урожайность зерна» – от 0,56 до 2,42 т/га; коэффициент вариации составил 44,3%. К средне варьирующим отнесены признаки «количество початков на 1 растении» (0,43–0,99 шт.), «масса 1 початка» (31–74 г), «масса 1000 зерен» (147–242 г), «количество зерен в ряду» (21–30 шт.), «количество зерен на початке» (282–540 шт.). Коэффициенты вариации соответ-

ственно составили 16,7; 19,6; 12,4; 10,6; 17,1%. Слабо варьирующими были признаки «количество рядов зерен» — 13–18 шт. (V = 9,7%), «выход зерна с почат-ка» — 54,5–80,1% (V = 9,6%).

Результаты корреляционного анализа позволили установить, что влияние изучаемых признаков на формирование урожая зерна самоопыленных линий восковидной кукурузы было различным (табл. 2).

2. Коэффициенты корреляции между урожайностью зерна и элементами ее структуры у линий восковидной кукурузы 2. Coefficients of correlation between grain productivity and elements of its structure of the lines of waxy maize

2 TOMOUT LATIN//TVIDLE VIDOV/OF CODUC	Единица	Годы			
Элементы структуры урожая зерна	измерения	2015	2016	2017	
Количество початков на 1 растении	шт.	0,55*±0,15	0,59*±0,14	0,47*±0,16	
Масса 1 початка	Г	0,46*±0,16	0,19±0,17	0,36*±0,16	
Масса 1000 зерен	Г	0,05±0,16	0,21±0,17	0,30±0,17	
Количество рядов зерен	шт.	0,36*±0,16	0,53*±0,15	0,44*±0,16	
Количество зерен в ряду	шт.	0,49*±0,15	0,36*±0,16	0,19±0,17	
Количество зерен на початке	ШТ.	0,53*±0,15	0,54*±0,15	0,40*±0,16	
Выход зерна с початка	%	0,51*±0,15	0,56*±0,15	0,02±0,18	

^{*} Достоверно при 5% уровне значимости.

В 2015–2017 гг. выявлена положительная корреляционная зависимость средней силы между урожайностью зерна и признаками «количество початков на 1 растении» ($r=0,55\pm0,15;\ r=0,59\pm0,15;\ r=0,47\pm0,16$ соответственно), «количество зерен на початке» ($r=0,53\pm0,15;\ r=0,54\pm0,15;\ r=0,40\pm0,16)$, «количество рядов зерен» ($r=0,36\pm0,16;\ r=0,53\pm0,15;\ r=0,44\pm0,16)$.

В 2015 и 2016 гг. средняя зависимость установлена между урожайностью зерна и количеством зерен в ряду ($r=0.49\pm0.15$; $r=0.36\pm0.16$ соответственно), выходом зерна с початка ($r=0.51\pm0.15$; $r=0.56\pm0.15$). Между урожайностью и массой 1 початка зависимость средней силы отмечена в 2015 г. ($r=0.46\pm0.16$) и 2017 г. ($r=0.36\pm0.16$).

Во все годы исследований зависимость между урожайностью зерна и массой 1000 зерен отсутствовала, однако имелась тенденция к увеличению урожайности с увеличением крупности зерен $(r=0.05\pm0.16...0,30\pm0.17)$.

Корреляционный анализ и анализ графиков поверхности позволили выявить возможность сочетания у самоопыленных линий восковидной кукурузы высоких значений взаимодополняющих признаков продуктивности. К таковым следует отнести «количество початков на 1 растении» и «масса 1 початка», «масса 1000 зерен» и «количество зерен на початке», «количество рядов зерен» и «зерен в ряду початка», «масса 1 початка» и «выход зерна с початка».

Построение графиков поверхностей предполагает аппроксимацию — достраивание графика до теоретически возможного максимального значения результирующего фактора — урожайности зерна при сочетании в одном генотипе максимально возможных значений двух переменных — взаимодополняющих элементов структуры урожая зерна.

Между взаимодополняющими признаками «количество початков на 1 растении» и «масса 1 початка» зависимость отсутствовала (r = -0,17±0,17... +0,06±0,18), что позволяет сочетать у линий высокие значения признаков. Урожайность зерна самоопыленных линий восковидной кукурузы возрастала пропорционально увеличению этих признаков (рис. 1).

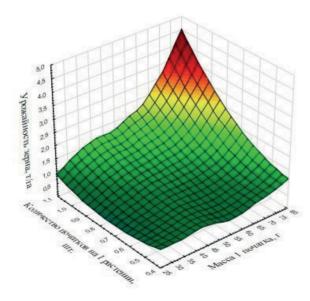


Рис. 1. Влияние элементов структуры «количество початков на 1 растении» и «масса 1 початка» на урожайность зерна самоопыленных линий восковидной кукурузы (2015–2017 гг.)

Fig. 1. The effect of "number of cobs per plant" and "weight of one cob" on grain productivity of self-pollinated lines of waxy maize (2015–2017)

Теоретически урожайность зерна линий может достичь 5 т/га при сочетании максимального количества початков на 1 растении 0,99 шт. и массы початка более 74 г.

В 2015 г. выявлена средняя отрицательная зависимость ($r=-0.37\pm0.16$) между признаками «масса 1000 зерен» и «количество зерен на початке». Но в 2016 и 2017 гг. такая зависимость отсутствовала ($r=-0.12\pm0.18$; $r=-0.10\pm0.18$), что позволяет предположить о возможности совмещения в одном генотипе высоких значений этих признаков. Урожайность зерна самоопыленных линий восковидной кукурузы увеличивалась пропорционально увеличению значений переменных (рис. 2).

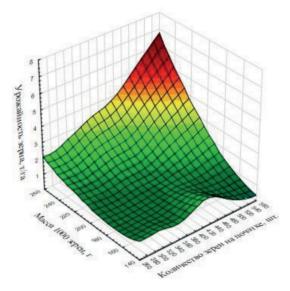


Рис. 2. Влияние элементов структуры «масса 1000 зерен» и «количество зерен на початке» на урожайность зерна самоопыленных линий восковидной кукурузы (2015–2017 гг.)

Fig. 2. The effect of "1000-kernels weight" and "number of kernels per cob" on grain productivity of self-pollinated lines of waxy maize (2015–2017)

Максимальная урожайность зерна может быть получена при сочетании максимальных значений массы 1000 зерен (241 г) и максимальных значений количества зерен на початке (540 шт.).

Установлена тенденция увеличения количества зерен в ряду при увеличении количества рядов зерен. Коэффициенты корреляции между признаками оказались низкими: $r = 0.27\pm0.17$ (2015 г.); $r = 0.18\pm0.17$ (2016 г.); $r = 0.32\pm0.17$ (2017 г.). Увеличение урожайности зерна у самоопыленных линий кукурузы происходило при увеличении количества рядов зерен до максимальных значений (18 шт.) и количества зерен в ряду до оптимальных (30 шт.). При дальнейшем увеличении количества зерен в ряду урожайность зерна снижалась (рис. 3).

В 2015 и 2016 гг. отмечалась тенденция к увеличению выхода зерна с початка при увеличении его крупности: r = 0,27±0,17 (2015 г.); r = 0,18±0,17 (2016 г.). Однако в 2017 г. выявлена противоположная тенденция (r = -0,18±0,17). Увеличение результирующего признака – урожайности зерна – происходило пропорционально увеличению значений переменных (крупность початка и выход зерна) и достигало максимальной величины при сочетании максимальных значений переменных (рис. 4).

Кумулирование высоких значений элементов структуры положительно сказывалось на урожае самоопыленных линий восковидной кукурузы. Выделены линии, характеризующиеся высокой урожайностью зерна (1,0–2,42 т/га) и высокими значениями признаков продуктивности (табл. 3).

Рис. 3. Влияние элементов структуры «количество рядов зерен» и «количество зерен в ряду початка» на урожайность зерна самоопыленных линий восковидной кукурузы (2015–2017 гг.)

Fig. 3. The effect of "number of rows" and "number of kernels per cob" on grain productivity of self-pollinated lines of waxy maize (2015–2017)

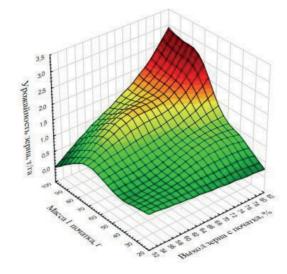


Рис. 4. Влияние элементов структуры «масса 1 початка» и «выход зерна с початка» на урожайность зерна самоопыленных линий восковидной кукурузы (2015–2017 гг.)

Fig. 4. The effect of "weight of one cob" and "number of kernels per cob" on grain productivity of self-pollinated lines of waxy maize (2015–2017)

3. Урожайность зерна и элементы его структуры у самоопыленных линий восковидной кукурузы (2015–2017 гг.) 3. Grain productivity and elements of its structure of self-pollinated lines of waxy maize (2015–2017)

I DNIHNII I	Урожай	Количество початков на 1 растении, шт.	Масса 1 початка, г	Масса 1000 зерен, г	Количество, шт.			BUYOT 200U2
	зерна, т/га				рядов зерен	зерен в ряду	зерен на початке	Выход зерна с початка, %
24/78	2,42	0,99	71	241	15	27	402	80,1
Wx2nMP	2,41	0,85	74	204	18	30	540	66,1
24/82(1)	1,98	0,79	70	206	18	27	491	78,2
25/75	1,63	0,97	55	156	16	26	402	75,8
26/48	1,48	0,73	64	211	14	26	366	77,8
27/17	1,36	0,98	42	157	13	24	327	73,0
25/89	1,28	0,62	56	212	14	22	297	77,9
24/29(5)	1,20	0,77	73	175	14	29	402	75,5
26/95	1,07	0,83	62	176	17	30	525	66,3
26/38	1,00	0,70	45	222	14	22	303	72,0
S	0,47	0,12	10,98	22,63	1,41	2,63	62,83	6,71

Наиболее высокими значениями количества початков на 1 растении (0,97–0,99 шт.) отличались самоопыленные линии 24/78, 25/75, 27/17. По массе 1 початка (71–74 г) выделились 24/78, Wx2MP, 24/29 (5). Крупносеменные формы (222–241 г) – 24/78, 26/38. Наибольшим количеством рядов зерен (18 шт.) отличались самоопыленные линии Wx2MP и 24/82 (1). Наибольшее количество зерен в ряду (30 шт.) и зерен на початке (525–540 шт.) отмечено у линий Wx2MP и 26/95. Высокий выход зерна с початка (80,1%) имела линия 24/78.

Выводы. Установлена зависимость между урожайностью зерна и элементами его структуры у линий восковидной кукурузы. Коэффициенты корреляции ва-

рьировали в зависимости от признака и года исследований (r = 0,02±0,18...0,59±0,14). Максимальную урожайность зерна самоопыленные линии восковидной кукурузы формировали при сочетании максимальных значений взаимодополняющих элементов структуры урожая: количество початков на 1 растении – 0,99 шт.; масса 1 початка – 74 г; масса 1000 зерен – 241 г; количество рядов зерен – 18 шт.; количество зерен на початке – 540 шт.; выход зерна с початка – 80,1% и оптимальном значении количества зерен в ряду – 30 шт.

Выделены новые самоопыленные линии восковидной кукурузы — 24/78, Wx2MP, 24/82 (1), 25/75 и другие с высокой урожайностью зерна (1,0–2,42 т/га) и высокими значениями элементов его структуры.

Библиографические ссылки

- 1. Костылев П. И., Краснова Е. В., Аксенов А. В., Костылева Л. М., Галаян А. Г. Анализ элементов структуры урожайности и других количественных признаков у образцов риса // Зерновое хозяйство России. 2018. № 1(55). С. 12–17.
- 2. Кривошеев Г. Я., Игнатьев А. С. Селекционная ценность образцов подвида восковидной кукурузы (*Zea mays L. ceratina*) // Достижения науки и техники АПК. 2017. № 1. С. 39–43.
- 3. Образцов А. С. Наследование элементов продуктивности и скороспелости у кукурузы // Кукуруза. 1978. № 8. С. 24–25.
 - 4. Шмараев Г. Е. Генофонд и селекция кукурузы. Теоретические основы селекции. СПб., 1999. Т. IV. С. 386.

References

- 1. Kostylev P. I., Krasnova E. V., Aksenov A. V., Kostyleva L. M., Galayan A. G. Analiz ehlementov struktury urozhajnosti i drugih kolichestvennyh priznakov u obrazcov risa [Analysis of yield structure elements and other quantitative characteristics of rice samples] // Zernovoe hozyajstvo Rossii. 2018. № 1 (55). S. 12–17.
- 2. Krivosheev G. Ya., Ignat'ev A. S. Selekcionnaya cennost' obrazcov podvida voskovidnoj kukuruzy (*Zea Mays L. Ceratina*) [The breeding value of samples of the subspecies of waxy maize (*Zea Mays L. Ceratina*)] // Dostizheniya nauki i tekhniki APK. 2017. № 1. S. 39–43.
- 3. Obrazcov A. S. Nasledovanie ehlementov produktivnosti i skorospelosti u kukuruzy [Inheritance of productivity elements and early maturity of maize] // Kukuruza. 1978. № 8. S. 24–25.
- 4. Shmaraev G. E. Genofond i selekciya kukuruzy. Teoreticheskie osnovy selekcii [The gene pool and maize breeding. Theoretical bases of selection]. SPb., 1999. T. IV. S. 386.

Критерии авторства. Авторы статьи подтверждают, что имеют на статью равные права и несут равную ответственность за плагиат.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

УДК 633.18:632.22

DOI 10.31367/2079-8725-2018-60-6-36-41

СОЛЕУСТОЙЧИВОСТЬ ГИБРИДОВ РИСА ПЯТОГО ПОКОЛЕНИЯ

П. И. Костылев¹, доктор сельскохозяйственных наук, профессор, главный научный сотрудник лаборатории селекции и семеноводства риса, p-kostylev@mail.ru, ORCID ID: 0000-0002-4371-6848;

Е. Б. Кудашкина², аспирантка, cudashkina.ekaterina@yandex.ru, ORCID ID: 0000-0002-3392-4774 ¹ФГБНУ «Аграрный научный центр «Донской»,

347740, Ростовская обл., г. Зерноград, Научный городок, 3; e-mail: vniizk30@mail.ru;

²Азово-Черноморский инженерный институт ФГБОУ ВО ДонГАУ,

347740, Ростовская обл., г. Зерноград, ул. Ленина, 21

Засоление почвы и воды в разной степени влияет на рост и развитие риса на всех стадиях, снижая его продуктивность. В статье приведены результаты лабораторного анализа определения устойчивости к засолению 186 гибридных образцов риса F_5 селекции ФГБНУ «АНЦ «Донской». Изучены образцы из трех гибридных комбинаций: IR 52713-2B-8-2B-1-2 х Новатор; IR 74099-3R-3-3 х Новатор; NSIC Rc 106 х Новатор. Исследования проводили в АЧИИ ФГБОУ ВО ДонГАУ. Семена образцов риса проращивали в рулонах из фильтровальной бумаги на 1,5%-м растворе NaCl и в дистиллированной воде. Солеустойчивость определяли как соотношение числа всхожих семян в опыте к контролю, выраженное в процентах. Цель исследований — провести анализ образцов риса по устойчивости к засолению. В результате анализа было установлено, что образцы риса существенно различались между собой по длине ростков и корешков на засоленном и контрольном вариантах. Графический материал статьи достоверно отражает относительные и абсолютные величины ростков и корешков в опыте и контроле. Корреляционный анализ показал среднюю связь между длиной ростков в опыте и солеустойчивостью по росткам (0,62 \pm 0,08), а также высокую — между длиной корешков в опыте и солеустойчивостью по корешкам (0,74 \pm 0,09). В результате ПЦР-анализа по маркерам RM493 и RM7075 удалось идентифицировать наличие доминантного локуса QTL Saltol в гомозиготном состоянии у 59 форм. По комплексу показателей выделено 14 лучших образцов. Отобранные на солевых растворах лучшие формы с длинными ростками и корешками высажены в виде рассады на чеках ОС «Пролетарская».

Ключевые слова: рис, солеустойчивость, гибрид, всхожесть, росток, корешок, NaCl, QTL Saltol.

SALT TOLERANCE OF RICE HYBRIDS OF THE FIFTH GENERATION

P. I. Kostylev¹, Doctor of Agricultural Sciences, professor, main researcher of the laboratory of rice breeding and seed-growing, p-kostylev@mail.ru, ORCID ID: 0000-0002-4371-6848;

E. B. Kudashkina², post graduate, e-mail: cudashkina.ekaterina@yandex.ru, ORCID ID: 0000-0002-3392-4774
¹FSBSI "Agricultural Research Center "Donskoy",

347740, Rostov region, Zernograd, Nauchny Gorodok, 3; e-mail: vniizk30@mail.ru;

²Azov-Blacksea Engineering Institute of FSBEI HE DonSAU,

347740, Rostov region, Zernograd, Lenin Str., 21

Soil and water salinization differently affects the growth and development of rice at all stages, reducing its productivity. The article presents the results of the analysis aimed to determine salt resistance of 186 hybrid samples of rice F₅ developed in the FSBSI "ARC "Donskoy". There were studied the samples developed from three hybrid combinations "IR 52713-2B-8-2B-1-2 x Novator"; "IR 74099-3R-3-3 x Novator"; "NSIC Rc 106 x Novator". The studies were carried out in the ABSIE FSBI HE DonSAU. The rice seeds were germinated in rolls of filter paper on 1.5% NaCl solution and in distilled water. Salt tolerance was determined as the ratio of the percentage of germinated seeds in the experiment to the control. The purpose of the research is to analyze rice samples for salinization resistance. The analysis found out that the rice samples differed significantly among themselves in the length of the sprouts and roots on the salted and control variants. The graphic material of the article reliably shows the relative and absolute values of sprouts and roots in a trial and in a control variant. The analysis showed an average correlation between the length of sprouts in the trial and salt tolerance for sprouts (0.62±0.08), as well as a high correlation between the length of the roots in the trial and salt tolerance for the roots (0.74±0.09). PCR analysis with the help of the markers RM493 and RM7075 made possible to identify in 59 forms the presence of the dominant QTL locus Saltol in the homozygous state. According to the set of indicators 14 best samples were identified. Selected on salt solutions, the best samples with long shoots and roots have been planted on the rice bays of the OS "Proletarskaya" in the form of seedlings.

Keywords: rice, salt tolerance, hybrid, germination, sprout, root, NaCl, QTL Saltol.